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The Phase Transition of the Directed Polymer 
on Disordered Hierarchical Lattices 
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The directed polymer on disordered hierarchical lattices is studied using an exact 
renormalization scheme. The phase transition is studied and a hyperscaling 
relation is derived. The fixed distributions of the renormalized energies are 
obtained numerically. The specific heat and associated exponents are computed 
from the fixed distributions. 
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1. I N T R O D U C T I O N  

The problem of directed polymers in random media has been extensively 
studied in recent yearsJ 1 lO) The directed polymer provides a simple but 
nontrivial disordered model which is related to a variety of other problems, 
such as growth models, spin glasses, etc. For  1 + l dimensions the system 
is always in the low-temperature phase and the exponents are known 
exactly. (4) However, for high dimensions the nature of the low-temperature 
phase is not yet fully understood. Derrida and Griffiths (5~ studied the 
problem by considering directed polymers on disordered hierarchical 
lattices, mainly because the problem is much simpler than in the case of 
Euclidean lattices. They derived an exact nonlinear zero-temperature recur- 
sion relation for the random energies and got some interesting results. For 
dimension 1 + 1 they found co = 0.30, which is very close the exact value 
1/3, where L ~ is the ground-state energy fluctuation of a polymer of length 
L. Other interesting properties of the problem have also been studied in 
recent papers. (9, lO) 
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For sufficiently high dimensions, it is found that there is a phase trans- 
ition between the low-temperature phase and a high-temperature phase. (6-8) 
Cook and Derrida (8) extended the approach used in ref. 5 to the finite- 
temperature case. They obtained an exact recursion relation for the partition 
function. By analyzing the properties of the moments of the partition func- 
tion under iteration, they showed that there is a critical point separating 
the low- and high-temperature phases for sufficiently high dimensions. 
They also computed the specific heat curve, which shows a cusp at the 
critical temperature. However, it is not easy to calculate the specific heat 
exponent from their method because the partition function grows 
indefinitely under iteration and has no fixed point. 

In this paper, we use a renormalization method in analogy with 
the Migdal-Kadanoff renormalization group (MKRG) for random spin 
systems.(ll 16) The fixed point for the phase transition is found to be 
associated with a fixed distribution of the renormalized energies. We also 
derive a hyperscaling relation and use it to obtain the specific heat 
exponent. 

2. THE M O D E L  A N D  THE RECURSION RELATION 

Following ref. 8, generalized hierarchical lattices can be constructed by 
an iterative rule where each brach has k bonds (see Fig. 1), at each new 
generation the number of the bonds is multiplied by kb, and at the nth 
generation the hierarchical lattices consists of (kb)  n 1 bonds. Disorder is 
introduced by assigning a random energy e~ for each bond ~ according to 
a given probability distribution p(eij). On these disordered hierarchical 
lattices, the directed polymer starts at A and ends at B. At the nth 
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Fig. 1. The iterative construction of the generalized hierarchical lattice. 
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generation the length of the polymer is L = k " -  1. The recursion relation for 
the partition function is 

_ (11) . . z ( .  (1) Z n + I - Z ,  Z n �9 . . . . . .  

where Zn+ 1 is the partition function at generation n + 1 and the Z(~ 'y) are 
the kb partition functions at generation n. The average free energy per unit 
length of the polymer at the nth generation can be written 

(log(Z~)) 
F,,(T) = - T  k, ,_ 1 (2) 

At the fixed point, F~(Tc) becomes independent ofn. From Eq. (2), we 
have ( l o g ( Z , ) ) ~ k  n-l ,  which is strictly increasing with n, so Eq. (1) has 
no fixed point. To find the fixed point, we follow the renormalization group 
method for spin systems (17) and introduce a multiplicative constant to the 
partition function at each stage�9 From (1) we have 

�9 o(bl)o(b2) o(b~) 0 ( 1 1 ) 0  ( 1 2 )  " ""  0 ( l k )  -F- " - [ -  ~ n  x . ~ n  " ' "  
r..~tt - r ~ n  -=--~n x . ~ n  

Qn+l = ( 3 )  
Cn 

where Q,+I  is the partition function at generation n +  1 in our new 
scheme, and Q(f) is the kb partition functions at generation n. We have 
Q ] ~  where e/j represent the initial random energies. The renor- 
malized energies at the nth generation are 

e, = -T log(Qn)  (4) 

From (3) and (4), one can easily see that the effect of c, is only to shift all 
energies by an amount of - -Tlog(c,)  at the nth generation. Since the 
absolute value of the energies is not important, only the variation of the 
energies determines the physical properties; this freedom permits us to set 
the mean value of the renormalized energies to zero, 

(log Q , )  = 0 (5) 

Then from (3) and (5), we have 

log(cn) (11) (12) =( log(Qn  Qn . . . Q ( l k ) +  . . .  + Q ( f l ) Q ( f 2 ) . . . Q ( f ~ ) ) )  (6) 

and cn is determined uniquely. The difference between our method and that 
of ref. 8 is that we only keep the fluctuation of the random energies, while 
in ref. 8 the absolute energies are kept to all iterations. In other words, we 
have the relation e n / T =  - [ l o g ( Z  j - ( l o g ( Z n ) ) ] ,  as we shall see in the 
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Appendix. At the fixed point, the distribution of e becomes invariant under 
iteration. 

The average of the free energy per unit length can be obtained directly 
from the additive constant log@n) in analogy with the spin systems (n'12'17) 

n- 1 log(G) 
F , ( T ) =  - T  E ~7 (7) 

i = 1  

In the Appendix, we show that (2) and (7) are equivalent to each 
other. One advantage of (7) is that cn grows much more slowly than Z , ;  
for example, at the fixed point cn becomes a constant. So it is more suitable 
to compute the free energy using (7) especially in high dimensions, where 
Z ,  grows rapidly with n. 

From Eq. (7), the hyperscaling relation can be derived in a standard 
way. (17) A very simple method for the derivation was given by da Cruz and 
Stinchcombe. (a4) Let v be the relevant exponent which is associated with 
the fixed distribution, we have 

~ = 2 - v  (8) 

where a is the specific heat exponent. Note that the hyperscaling law does 
not explicitly depend on dimension, which is different from the spin 
systems. 

To see the condition for the phase transition, we let the variance of the 
initial energy be very small and the average value be zero. Using (4), we 
expand (6) to second order in e, and take the average over disorder; we get 

kb - k 
log(cn) = log(b) + - - ~  (e2~} (9) 

We substitute (9) into (4), then do the same kind of expansion, square 
both sides, average over disorder, and keep the lowest order; we get 

k 2 (e~.+ ~ > =g  <~.> (lO) 

For k/b  > 1, the variance increases under iteration, the directed polymer is 
always in the low-temperature phase, and no phase transition occurs. For 
k/b  < 1, the variance decreases under iteration, the directed polymer is in 
the high-temperature phase, and as we increase the initial variance, we 
need to keep higher terms in (9) and the system may make a transition to 
the low-temperature phase; a phase transition occurs. In particular, let 
k = 2; the condition for phase transition requires b > 2, in agreement with 
ref. 8. 
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3. N U M E R I C A L  RESULTS 

In this paper we use a Monte Carlo method to study the phase 
transition. Several numerical approaches have been developed to study the 
critical properties of various random systems on hierarchical lattices. (12'~5) 
Since the fixed point is unstable under renormalization, we use a version of 
Newton's method to locate the fixed distribution of the renormalized 
energies. The distribution is represented by 150,000 numbers and is trans- 
formed according to (3) and (6). We first narrow down the initial condition 
onto a phase boundary; the distribution flows to the neighborhood of the 
fixed point. We assume that the fixed distribution is controlled by the 
second moment of the energies. If the root mean square a of the random 
energies changes into or' under renormalization, then each renormalized 
random energy is scaled by a factor [1 - 0 . 2 ( a ' - a ) ] a / a ' .  In other words, 
the distribution is adjusted in the direction opposite to the change. If the 
assumption is correct, then the distribution should converge to the fixed 
distribution. The simulation is carried out for k = 2, b = 3 and k = 2, b = 5. 
After many iterations we find a is 0.56 _+ 0.03 for b = 3 and 0.78 + 0.05 for 
b = 5. It would be interesting to check this result with some other methods, 
such as the histogram method. (12l From Fig. 2, one can clearly see that the 
fixed distribution is not symmetric, unlike the case for the spin-glass 
system. (13) 

To calculate the exponent, we use a very similar procedure to ref. 15; 
we first find the fixed distribution by the above procedure, then a second 
copy of the ensemble of the random energies is made. We multiply each 
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Fig. 2. The fixed distributions of the random energy for b = 5 (open circles) and b = 3  
(solid circles). 
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random energy by a number f which is slightly larger than one; we choose 
f =  1.0001. The two copies of the distribution are then simultaneously 
transformed according to the above procedure, and the difference of o- 
between the two copies at each successive iteration is recorded, 6,; then the 
exponent v is given by 

log(k) 
v -  (11) 

l og ( fn /6n  -- 1) 

After many iterations, we take the average value of 6 , / 6 ~ _ 1 .  We find 
v=3 .8  +0.3 for b =  3 and v=2.7__0.1 for b = 5 .  The value of ~ can be 
obtained from the hyperscaling law (10). We get ~ =  -1 .8  for b =  3 and 

= -0 .7  for b = 5. 
In ref. 8, the specific heat curves were calculated numerically; the 

initial energies were chosen from the Gaussian distribution, and the curve 
displays a cusp for b = 5. In this paper, we choose the fixed distribution as 
the initial distribution, and using our new formula (7), we compute the 
specific heat curves. The cusp we obtain for b = 5 has a much bigger 
amplitude than the one in ref. 8 (see Fig. 3). This is not surprising, since 
if we start from an arbitrary random distribution close to the phase 
boundary, the distribution would flow to the fixed distribution first and 
then drift either to the low-temperature phase or high-temperature phase. 
Note that after each iteration the free energy is divided by a factor of 2 [see 
(2) and (7)] and therefore the amplitude is reduced. We also calculated the 
curve for b = 3 (see Fig. 4); however, the peak is rounded at the critical 
temperature due to a large, negative ~. 

In the M K R G  scheme, several analytical methods (15'16) have been 
developed to study the critical properties of diluted spin systems with a 
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The specific heat  curve for b = 5. 
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The  specific heat  curve for b = 3.  

positive e where the fixed point is also associated with a fixed distribution. 
If the fixed distribution is narrow, using a moment expansion method, one 
gets some rather satisfying results. However, if the distribution is wide, 
these methods may have some errors. In our case, we calculated the first 
five moment of the renormalized energies for b = 3, which is the smallest 
integer to allow the phase transition. Unfortunately, we found that these 
moments are the same order. This indicates that the analytic calculations 
may not be feasible. 

4. CONCLUSION 

We have seen that the phase transition is associated with a fixed 
distribution of the renormalized energies. The distribution either spreads 
under renormalization in the low-temperature phase or shrinks in the 
high-temperature phase. The average of the renormalized energies is always 
kept at zero. This is very similar to the transition between the spin-glass 
phase and the paramagnet phase for the Ising model, except that the fixed 
distribution is not symmetric. We think that the hyperscaling law derived 
here also holds in the Euclidean space as in  the case of the spin systems. 
Unfortunately, the wandering exponent cannot be computed on the hier- 
archical lattices. The numerical method we have developed also can be 
applied to the spin-glass transition on hierarchical lattices. (13) A similar 
phase transition has been found for the self-avoiding random walk in a 
quenched random medium if d > 4.(ls) However, if the disorder is correlated 
in a special way, (~9) the phase transition can occur in three dimensions, and 
the specific heat displays a cusp. 
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APPENDIX.  THE EQUIVALENCE OF (2)  A N D  (7)  

To save writing, we only discuss the case k = 2, b = 2; the generaliza- 
t ion to other  cases is s traightforward.  We use the induct ion me thod  to 
prove  that  our  app roach  is consistent with ref. 8. Start ing f rom the same 
initial distribution, we have 

Z ~ i ) =  Q]i) (A1) 

Using (A1), (2), and (3), we have the following relation: 

Z(2 i) = Z (1 )7 (2 ) -1 -7 (3 )7 (4 )1  ~ 1  - - ~ I  - -1  

((')(i)(~(i) .-I- ()(i)()(i)] 
-~-~)~1 ~ 1  ~ ~ 1  ~ 1  l 

= cl Q~i) (A2) 

Suppose  at the nth generat ion w e  have 

Z ~ ~  2 " - i  1 Q~2 ) (13)  
i 

One can easily see that  when n =  2, (A1) is recovered f rom (13).  Fo r  the 
(n + 1)th generat ion,  we obta in  

Z( i )  Z (1)Z  (2) (3) (4) . + 1 =  ,, + Z , ,  Z .  

= exp log(c~) 2 n - i  1 ( O  (1)(~ (2) -~- O (3)O (4) ~ 

1 

= e x p  ~ log(c i )2  " + 1 - i - 1  c ,~.~+ 1 
- i = 1  

I l = e x p  ~ log(ci) 2 " + 1 - ~ - 1  ~n+l~ (A4) 
i ~ l  

so we have proved  (A3). N o w  we can derive (7). F r o m  (2), ( t 3 ) ,  and (5), 
we have 

( l o g ( Z . ) )  
F . (  T )  = - T 2"  

= - T  2 7 + 
i 1 

, -  1 log(ci) 
= - T  ~2 2 7 (15)  

i = 1  
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F r o m  (4), (A3),  a n d  (A5),  the r e n o r m a l i z e d  energy  can  be o b t a i n e d  by  

en = _ [ - log(Z.)  --  ( l o g ( Z n ) )  ] (A6) 
T 

F o r  the m o r e  genera l  case, 2 is rep laced  by  k, while  b does  n o t  get 

i nvo lved  explicitly. 
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